SHORT COMMUNICATIONS

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible.

Acta Cryst. (1983). A39, 593-594
Lorentz factors for large-mosaic crystals. By J. D. Axe and J. B. Hastings, Brookhaven National Laboratory, Upton, NY 11973, USA
(Received 29 November 1982; accepted 1 February 1983)

Abstract

General expressions are derived for the Lorentz factor for two- and three-axis spectrometers to be used when the vertical resolution is comparable to or less than the mosaic of the measured Bragg reflections.

Intensities from different Bragg reflections integrated along a path s in a direction $\Delta \mathbf{Q}$ in reciprocal space are related by a Lorentz factor $$
\begin{equation*} I_{1 \mathrm{Q}}\left(\mathbf{Q}_{0}\right) \equiv\left\lceil I_{\mathrm{Bragg}}\left(\mathbf{Q}_{0}+s \Delta \mathbf{Q}\right) \mathrm{d} s \sim L\left(\left|Q_{0}\right|\right)\left|F\left(\mathbf{Q}_{0}\right)\right|^{2}\right. \tag{1} \end{equation*}
$$

The Lorentz factor, $L\left(\left|Q_{0}\right|\right)=L\left(\theta_{s}\right)$, depends upon the direction of the scan. For example, if the sample-detector collimation is relaxed so that the detector receives all the scattered radiation,

$$
L=\left(\sin \theta_{s}\right)^{-1}
$$

for scans parallel to $\mathbf{Q}_{0}(\theta-2 \theta$ scans but with equal Q steps $)$, and

$$
L=\left(\cos \theta_{s}\right)^{-1}
$$

in scans perpendicular to \mathbf{Q}_{0} (φ scans with equal Q steps).
Iizumi (1973) discussed the effect of horizontal collimation after the sample in a two-axis spectrometer and showed that for a $\theta-2 \theta$ scan, and only for that scan, does the Lorentz factor retain its simple form. Pynn (1975) showed numerically that even for a $\theta-2 \theta$ scan the simple Lorentz factor is modified with tight vertical collimation for a three-axis spectrometer. This note generalizes the above, giving explicit expressions for the modified Lorentz factors for two- or three-axis spectrometers and samples with arbitrary horizontal and vertical mosaic. The derivation, which was obtained using the formulation of Yessick, Werner \& Sato (1973), is omitted.

The Lorentz factor for a $\theta-2 \theta$ scan (but with equal Q steps) for a mosaic sample is

$$
\begin{equation*}
L=\frac{f_{v} f_{h}}{\sin \theta_{s}} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& f_{h}=\left\{1+\frac{4 \eta_{h}^{2}}{\alpha_{M}^{2}+\alpha_{A}^{2}}\right\}^{-1 / 2} \tag{3a}\\
& f_{v}=\left\{1+\frac{4 \eta_{\nu}^{2} \sin ^{2} \theta_{s}}{\beta_{M}^{2}+\beta_{A}^{2}}\right\}^{-1 / 2} \tag{3b}
\end{align*}
$$

and $\eta_{h}\left(\eta_{v}\right)=$ horizontal (vertical) sample mosaic, $\alpha_{M}\left(\beta_{M}\right)=$ effective horizontal (vertical) collimation before the sample, $\alpha_{A}(\beta \mathrm{~A})=$ effective horizontal (vertical) collimation after the sample.

Explicitly, for a single-crystal monochromator,

$$
\begin{align*}
& \alpha_{M}^{2}=\left[\frac{1}{\alpha_{0}^{2}+4 \eta_{M}^{2}}+\frac{1}{\alpha_{1}^{2}}\right]^{-1} \tag{4a}\\
& \beta_{M}^{2}=\left[\frac{1}{\beta_{0}^{2}+4 \eta_{M}^{2} \sin ^{2} \theta_{M}}+\frac{1}{\beta_{1}^{2}}\right]^{-1} \tag{4b}
\end{align*}
$$

and, for a triple-axis-analyzer section,

$$
\begin{align*}
& \alpha_{A}^{2}=\left[\frac{1}{\alpha_{3}^{2}+4 \eta_{A}^{2}}+\frac{1}{\alpha_{2}^{2}}\right]^{-1} \tag{5a}\\
& \beta_{A}^{2}=\left[\frac{1}{\beta_{3}^{2}+4 \eta_{A}^{2} \sin ^{2} \theta_{A}}+\frac{1}{\beta_{2}^{2}}\right]^{-1} \tag{5b}
\end{align*}
$$

Fig. 1. Effect of vertical Lorentz correction for neutron scattering data on intercalated graphite, KC_{24}, with broad-mosaic structure.
© 1983 International Union of Crystallography

Collimators are specified by the subscript 0 (source-monochromator), 1 (monochromator-sample), 2 (sampleanalyzer) and 3 (analyzer-detector). For a double-axis spectrometer $\alpha_{3}=\beta_{3} \rightarrow \infty$ in the above expressions giving

$$
\begin{equation*}
\alpha_{A}=\alpha_{2} \quad \beta_{A}=\beta_{2} . \tag{5c}
\end{equation*}
$$

The following points should be noted.
(a) f_{h} is independent of θ_{s} and can be absorbed into other constants. However, it gives a simple expression for the loss of intensity due to horizontal collimation.
(b) If $4 \eta_{v}^{2}>\left(\beta_{M}^{2}+\beta_{A}^{2}\right)$ there will necessarily be a cross over from a small $-Q$ region where

$$
f_{v} \simeq 1, \quad L \sim \frac{1}{\sin \theta_{s}}
$$

to a large- Q region where

$$
f_{v}=\frac{\left[\beta_{M}^{2}+\beta_{A}^{2}\right]^{1 / 2}}{2 \eta_{v} \sin \theta_{s}}, \quad L \sim \frac{\left[\beta_{M}^{2}+\beta_{A}^{2}\right]^{1 / 2}}{2 \eta_{v}\left(\sin \theta_{s}\right)^{2}} .
$$

In the large- Q region the θ_{s} dependence is identical to that for a powder sample. (One may think of f_{v} as the fraction of total out-of-plane scattering reaching the detector.)
(c) In comparing $\theta-2 \theta$ scans done with equal θ step, (2) is simply modified by replacing the factor $\left(\sin \theta_{s}\right)^{-1}$ by (\sin $\left.2 \theta_{s}\right)^{-1}$.

Fig. 1 illustrates the effect of vertical Lorentz corrections for neutron scattering data taken on a stage-2 intercalated graphite compound KC_{24}. The data were taken with $\lambda=$ $2.5 \AA$ neutrons using a triple axis spectrometer with $\beta_{M} \simeq$ 0.7° and $\beta_{A} \simeq 1.9^{\circ}$ and the (00 l) reflections had a measured mosaic $\eta_{h}=\eta_{v} \sim 2^{\circ}$ FWHM. Note that the agreement for the high-angle reflections ($l=5$ and 6) is considerably improved by application of the correct Lorentz factor.

References

Iızumi, M. (1973). Jpn. J. Appl. Phys. 12, 167-169.
Pynn, R. (1975). Acta Cryst. B31, 2555.
Yessick, M., Werner, S. A. \& Sato, H. (1973). Acta Cryst. A29, 372-379.

Acta Cryst. (1983). A39, 594
Statistical geometry. I. A self-consistent approach to the crystallographic inversion problem based on information theory: Erratum. By Stephen W. Wilkins, CSIRO, Division of Chemical physics, PO Box 160, Clayton, Victoria, Australia 3168 and Institut Laue-Langevin, BP156 Centre de Tri, Grenoble Cedex 38042 France, Joseph N. Varghese, CSIRO, Division of Protein Chemistry, Royal Parade, Parkville, Victoria, Australia 3052 and Mogens S. Lehmann, Institut Laue-Langevin, BP156 Centre de Tri, Grenoble Cedex 38042, France
(Received 30 March 1983)

Abstract

As a result of a printer's error, the first line of § 4.6 (page 56) of Wilkins, Varghese \& Lehmann [Acta Cryst. (1983), A39, 47-60] is in error. The first sentence of that section should read: 'In order to give an illustration of the way in which the SGM may be used, ...'.

All information is given in the Abstract.

Tensor properties and rotational symmetry of crystals. III. Use of symmetrized components in group $\mathbf{3}\left(\mathbf{3}_{z}\right)$. Erratum. By F. G. Fumi and C. Ripamonti, Istituto di Scienze Fisiche, Universitá di Genova, Italy and GNSMCNR, Unitá di Genova, Italy

(Received 18 April 1983)

Abstract

In Fumi \& Ripamonti [Acta Cryst. (1983), A39, 245-251], there are errors on page 249 in equation $\operatorname{II}(b)$ for the evenparity c^{+}subtensor and $\mathrm{II}(a)$ and (b) for the even-parity c^{-} subtensor.

The correct equations are given.

Several misprints are present on page 249 of Fumi \& Ripamonti (1983):

First column, equations II (b)
The first and third equations should read:

$$
\begin{aligned}
& \text { yyyyyxx }=c_{1} \bar{y} \overline{15} \bar{x} \bar{x} x x^{+}+c_{2} \bar{y} \bar{y} \bar{y} \bar{x} \bar{x} \bar{x} y x^{+} \\
& \text {yyyyy } x x^{+}=\frac{1}{3} \bar{y} \bar{y} \bar{x} \bar{x} x x^{+}-\frac{1}{6} \bar{y} \bar{y} \bar{y} \bar{x} \bar{x} \bar{x} y x^{+} .
\end{aligned}
$$

(c) 1983 International Union of Crystallography

